Relevant Feature Selection for Human Pose Estimation and Localization in Cluttered Images
نویسندگان
چکیده
We address the problem of estimating human body pose from a single image with cluttered background. We train multiple local linear regressors for estimating the 3D pose from a feature vector of gradient orientation histograms. Each linear regressor is capable of selecting relevant components of the feature vector depending on pose by training it on a pose cluster which is a subset of the training samples with similar pose. For discriminating the pose clusters, we use kernel Support Vector Machines (SVM) with pose-dependent feature selection. We achieve feature selection for kernel SVMs by estimating scale parameters of RBF kernel through minimization of the radius/margin bound, which is an upper bound of the expected generalization error, with efficient gradient descent. Human detection is also possible with these SVMs. Quantitative experiments show the effectiveness of pose-dependent feature selection to both human detection and pose estimation.
منابع مشابه
Camera Pose Estimation in Unknown Environments using a Sequence of Wide-Baseline Monocular Images
In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured images taken by hand-held camera in room-sized workspaces with maximum scene depth of 3-4...
متن کاملاستفاده از برآورد حالتهای پویای دست مبتنی بر مدل، برای تقلید عملکرد بازوی انسان توسط ربات با دادههای کینکت
Pose estimation is a process to identify how a human body and/or individual limbs are configured in a given scene. Hand pose estimation is an important research topic which has a variety of applications in human-computer interaction (HCI) scenarios, such as gesture recognition, animation synthesis and robot control. However, capturing the hand motion is quite a challenging task due to its high ...
متن کاملTowards Robust and Automated Head Pose Estimation: Elastic Energy Model
Pose estimation is an important part in human face recognition because head rotations will significantly affect the recognition accuracy. However, automated and accurate pose determination still remains an unsolved problem in the research community. In this paper, we propose a novel Elastic Energy Model to tackle this problem, which employs statistical energy contributions of a set of feature p...
متن کاملAn Iterative Regression Approach for Face Pose Estimation from RGB Images
Wenye He This paper presents a iterative optimization method, explicit shape regression, for face pose detection and localization. The regression function is learnt to find out the entire facial shape and minimize the alignment errors. A cascaded learning framework is employed to enhance shape constraint during detection. A combination of a two-level boosted regression, shape indexed features a...
متن کاملAn Invariant and Compact Representation for Unrestricted Pose Estimation
This paper describes a novel compact representation of local features called the tensor doublet. The representation generates a four dimensional feature vector which is significantly less complex than other approaches, such as Lowe’s 128 dimensional feature vector. Despite its low dimensionality, we demonstrate here that the tensor doublet can be used for pose estimation, where the system is tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008